Symmetry Each Other

27 януари 2026 г.

Symmetry Each Other

"Its own will willeth now the spirit;
his own world winneth the world's outcast"

Friedrich Nietzsche,
"The Three Metamorphoses",
tr. Thomas Common

           Momentum & Inertia. But you encounter in the world yourself, the fermion, 
and (!) then in yourself - the world, the boson. Let's pulse in... 

           Just a core, a fermion → core in oscillation:

               impulse, a moment in space ^;

               energy, a phase in time ^^.

           (Pendulum.) 

           "All electrical engineers are familiar with the IDEA OF a pulse, 

and the δ-function is just a way of EXPRESSING a pulse mathematically." 

- Paul Dirac (1963).*    

               .energy, a phase in space

               ;impulse, a moment in time       

           :boson variables, oscillation as core (!) ← Just an oscillation... 

                                | (-1; Ω < 0)

           (1) sgn(Ω) = |    0; Ω = 0

                                |  +1; Ω > 0, fermion variables, potentialization ← ^ & ^^.

           (2) ∫0Ωcos(ωt)dω

= (1/t)∫0Ωcos(ωt)d(ωt)

= (1/t)sin(ωt)|0Ω

= (1/t)[sin(Ωt) - sin(0t)]

= (1/t)sin(Ωt)

= Ω[1/(Ωt)]sin(Ωt)

= Ωsinc(Ωt).

           (3) Power, f(Ω) = [1/(π/Ω)]∫-∞/(π/Ω)+∞/(π/Ω)Ωsinc(Ωt)dt = Ωsgn(Ω) = Ω ≥ 0;

limΩ→∞f(Ω)

→ dΩsgn(Ω)/dΩ ≥ Ω, actualization

→ 0 ≤ Ω ≤ 1, no need of renormalization 

→ limΩ→∞{[1/(π/Ω)]∫-∞/(π/Ω)+∞/(π/Ω)Ωsinc(Ωt)dt}

= [1/(π/1)]∫-∞/(π/1)+∞/(π/1)1sinc(1t)dt = 1, integrity, just an oscillation (! as core).

           (4) δ(t) = limΩ→∞Ωsinc(Ωt), Dirac δ-function, boson variables.

           Names:

                      "sgn", sign;

                      "cos", cosine;

                      "sin", sine;

                      "sinc", sine cardinal;

                      "lim", limit;

                      "∫", integral;

                      "d", differential;

                      "f", function.  

           "We have boson variables appearing automatically in a THEORY that starts 

with only fermion variables, provided the number of fermion VARIABLES is infinite." 

- Paul Dirac, "Spinors in Hilbert Space".

           (Just an oscillation → "normalization": a time in space & a space in time.)

           ----------

           * Max Jammer, "The Conceptual Development of Quantum Mechanics":

                      Slavoj Žižek;

                      John Nash;

                      Luitzen Brouwer;

                      Franz Brentano.

SINC:



Paul Dirac, Interview by Friedrich Hund (1982):


"Dirac graduated from the University of Bristol 
with a First Class Honours Bachelor of Science 
degree in electrical engineering in 1921...
... the economic climate of the post-war depression 
was such that he was unable to find work as an engineer."
- Wikipedia, "Paul Dirac", Jan 26, 2026 (link).